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The representation of  diatomic potential energy curves by rational fractions 
using low order polynomials in numerator and denominator is investigated. 
The rational fraction method, which is illustrated by examples, is shown to 
fail in providing a robust representation of diatomic potentials for wide 
application. 
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Several studies show that rational fractions can give a good representation of 
diatomic potentials [1-7]. For example, in recent work Beckel (and co-workers) 
[3-7] made a least-squares fit to ab initio data on the potential curves of the 
ground and some excited states of H~- and the ground-state of H2 using the 
function 

V ( R ) _ p o + p l R + . ' ' p L  RL [ L ]  
l + q l R + "  qNR ----~= " (1) 

They obtained very accurate representations of these potentials but only by using 
high order polynomials in numerator and denominator; L = 4, N = 10. 

Our interest in such functions lies in the possibility that the coefficients p and q 
can be chosen so a s to  reproduce the long-range part of the potential, normally 
expressed as a power series in R -1, as well as the region around the minimum. 
Beckel and co-workers [3] have thought along similar lines, for example, by 
taking for the H2 ground state N = L + 6  and (pL/q~)=--C6=--6.499027ao 6, 
which reproduces the leading term (-C6 R-6) in the dispersion energy. However, 
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what is not clear from previous work is whether a function such as (1) will be 
widely useful as a representation of diatomic potentials. To be so it must be 
possible to obtain the coefficients p and q from spectroscopic data rather than 
from ab initio calculations, and, in view of the differing amount of data for 
different systems, the function needs to be robust to changes in the length of the 
polynomials L and N. The evidence on this is not encouraging. For example, 
Sonnleitner and Beckel [6] showed that the potential of the 2po-u state of H2 
could be fitted well by [ L / N ]  = [3/5], [4/8] and [6/10] functions but they found 
no satisfactory independent [5/9] function. For the H2 ground-state [3] no 
satisfactory even-L functions could be obtained. 

Our strategy will be to start by imposing minimum requirements on the function 
and to add further conditions which lead progressively to a more accurate 
function. However, we first note that (1) does not have a pole at R = 0 as required 
for the nuclear repulsion and for that reason we have made our most extensive 
studies with the function R - I [ L / N ] .  This function was also considered by Beckel 
and co-workers [4] for the ground-state of H2 but was not examined in any depth. 
For the systems we studied, the additional factor R -~ gave a more satisfactory 
function. 

The asymptotic limit can be imposed by writing the function in the form 

V(R)  = qNRN_L+ 1 1 PLR p qNR qN'-~  (2) 

and making a Taylor expansion in ( I /R) .  Thus, if the potential approaches 
infinity with a leading term - CkR-k, then k = N - L + 1 and Ck = -- (pL/qN). If  
the higher terms in the ( I / R )  expansion are known then these provide further 
restrictions on the coefficients. For example, for neutral atoms in iS or 2S states 
the asymptotic expansion contains only even powers of ( I / R )  hence the poly- 
nomials L and N are best written with only odd or even powers of R, one being 
odd the other even 1 (except for the leading term in the denominator which is 
even of order zero). In particular we have the result 

PLqN-2 PC-2 (3) 
Ck+2 q~ qN 

PL-2qN-2 PL-4 PLq2-2 Ck+4 PLqN-4 ~ (4) 
q~ q~ qN q3  

A minimal requirement for most potentials is that there is a single minimum at 
R = Re of depth De; This may be either a van der Waals or valence minimum. 
To ensure that this is minimum and not some other stationary point we can 

1 A more general procedure would be to consider even and odd terms in both polynomials, and 
impose the additional requirement that the odd terms of the asymptotic expansion should vanish. 
Such an approach has however been found to give results even poorer than those reported here, 
mainly due to singularities arising for values of R between Ro and Re; thus, it will not be discussed 
any further 
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require that the potential becomes zero at some point R = Ro, R0 < Re. Ro marks 
the onset of the net repulsive part of the potential. 

The simplest function with four parameters that satisfies this requirement has the 
form 

po + p2R 2 
V(R)=R[I+qARA+qk+aRk+I]  , A < k + l .  (5) 

The two-term numerator ensures that there is only one zero in V(R)  for positive 
R. The coefficients of this function must satisfy the following equations 

Ck = --(P2/qk+O (6) 

R~ = -(Po/P2) (7) 

(po+p2R~) 
De = Re(1 -~ A k+l (8 )  qaRe + qk+lRe ) 

2p2 = - D e [ R e '  + ( A + 1)qAR A-' + ( k + 2)qk+,R~]. (9) 

For any choice of A and k equations (6)-(9) can be linearized in the four 
coefficients and hence solved. This has been done for the three examples 
Ne2(X leg),+ Ar2(X l~g) + and the first triplet excited state of Li2 (a 3~+) which 
is also a van der Waals state. Taking k = 6 and A = 1 we obtain results shown in 
Table 1 and Figs. 1, 2 and 3. It is seen that the potential (5) gives a too narrow 
bowl for the van der Waals well, and displays a plateau at a positive energy 
similar in absolute value to that of the well depth. 

We now impose the more stringent requirement that the potential agrees with 
the first three terms of the asymptotic expansion in ( l / R ) ,  plus the constraint 
that there is a minimum at Re and a zero at R0. To do this we take the function 

po + p2R 2 
V( R ) - R(1 + qR + q3R3 + qsRS + q7 R7) (10) 

and again examine the systems Ne2(X l~g),+ Ar2(X l~g),+ and Li2 (a 32+). 

The potentials for Ne2 and Ar2 are quite satisfactory up to a repulsive energy of 
about twice the depth of  the well but above that they deviate substantially from 
the best empirical potential because there are zeros in the denominator o f  (10) 
for positive values of R. The Ne2 potential has a singularity at R = 0.75ao and 
that of At2 at 3.5a0. 

For Li2 the potential is quite unsatisfactory as the singularity occurs close to Ro 
at R ~ 6.2ao, being negative from this point inwards (this part of the potential 
curve falls outside the scale of  Fig. 3 and hence is not shown). 

The problem of singularities was noticed by Beckel and co-workers [4] and any 
potential with such a singularity was dropped without further consideration. As 
a result their polynomials were of high order and the coefficients can only be 
obtained by a least-squares fitting to ab initio data. 
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Fig. 1. A comparison of the rational fraction potentials of the present work [ . . . .  (5), - - - (10), 
. . . . .  (11)] with an accurate empirical curve [8] ( ) for Ne:(X iZg).+ Also shown is the asymptotic 
dispersion energy curve ( . . . .  ) terminated at the R -l~ term 

Fig. 2. A comparison of the rational fraction potentials of the present work with an accurate 
semiempirical curve [12] for Ar2(X 1 + Legend as Zg). in Fig. 1 

The only other  simple funct ion that can reproduce  our  input data is 

po + p2R2 + p4R 4 
V(R)  = R(1 + qsRS+ q7RT+ q9R9)" (11) 

However,  we again found  singularities and for both Ne2 and Ar2 they were close 
to Ro (4.5a0 for  Ne2 and 6.0ao for Ar2) so that the potentials were less satisfactory 
than the funct ion (10). For  Li2 the discontinuity occurs beyond  the van der Waals 
min imum and hence is totally unsatisfactory. 

A more  accurate test o f  the potential  in the attractive region can be obtained by 
compar ing  the calculated with the observed vibrational frequencies. This is done 
in Table 2 for  Ne2 and Ar2 using the potentials (10) and (11). Funct ion (10) is 
clearly almost  as accurate as the best empirical  potentials in the attractive well. 

In  conclusion we have found  that if a rational fraction is parametr ized to the 
asymptot ic  expansion,  to the depth and posi t ion o f  the potential  minimum, to 
the posi t ion Ro of  the zero, then this can be a very accurate representat ion of  
the potential  in the attractive region. However,  singularities will usually occur  at 



464 J .N .  Murrell et al, 

t0  3 

,.=, 

% 

101 

I 
io  0 

16 �84 

-0,1 

-0.3 

-0.S 

-0.7 

~O.g 

-1.3 

I 

>'>,>~,, 

I 

I I I 

, I , i  , I 

',li  / /V/# iI~ , / " / /  .,:: 
II(~ i / / /  / /  
iI:i i ,/// // 
ll~i i /// / / 
\\;i~ i /// :: i 
\,~,~ .,,,:/,, : / 
' ~ ~  / 

[ ~ I , I ~i / ~ I lit, 
6 8 10 I R / l i o  

Fig. 3. A comparison of the rational fraction 
potentials of the  p r e s e n t  work with an  a c c u r a t e  

theoretical curve [13] for Li2(a 3s L e g e n d  as 

in Fig. 1 

T a b l e  2. A comparison of the spectroscopic constant G(v) from the various potentials for Ne 2 a n d  

Ar2 with experiment. All values, in cm -1, are relative to the ground-state constant G(0) 

System Potential G(1) G(2) G(3) G(4) G(5) 

Ne2(X 1 + X,g) (10) 13.72 16.75 - -  - -  - -  
(11) 13.68 16.61 - -  - -  - -  
exp [14] 13.7+0.75 n.o. ~ - -  - -  - -  

1 + Ar2(X s  (10) 26.42 47.02 62.24 72.71 79.21 
( 11 ) 25.93 46.62 62.12 72.87 79.57 
exp [9] 25.744-0.1 46.154-0.2 61.764-0.2 72.664-0.2 79,444-0.25 

a Not o b s e r v e d  

some values of  R between 0 and Ro, and, as our example of  Li2 has shown, these 
may even occur for R > Re. 

Because of  these singularities we believe that rational fractions cannot be 
described as a robust representation of  a diatomic potential for wide application. 

There are other representations based on the same input data which have general- 
ity and accuracy, and these provide alternative functions for practical use (see 
[13, 15-17] for examples).  
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